%matplotlib inlineimport mxnetfrom mxnet import nd,autogradfrom mxnet import gluon,initfrom mxnet.gluon import data as gdata,loss as gloss,nnimport gluonbook as gbn_train, n_test, num_inputs = 20,100,200true_w = nd.ones((num_inputs, 1)) * 0.01true_b = 0.05features = nd.random.normal(shape=(n_train+n_test, num_inputs))labels = nd.dot(features,true_w) + true_blabels += nd.random.normal(scale=0.01, shape=labels.shape)train_feature = features[:n_train,:]test_feature = features[n_train:,:]train_labels = labels[:n_train]test_labels = labels[n_train:]#print(features,train_feature,test_feature)# 初始化模型参数def init_params(): w = nd.random.normal(scale=1, shape=(num_inputs, 1)) b = nd.zeros(shape=(1,)) w.attach_grad() b.attach_grad() return [w,b]# 定义,训练,测试batch_size = 1num_epochs = 100lr = 0.03train_iter = gdata.DataLoader(gdata.ArrayDataset(train_feature,train_labels),batch_size=batch_size,shuffle=True)# 定义网络def linreg(X, w, b): return nd.dot(X,w) + b# 损失函数def squared_loss(y_hat, y): """Squared loss.""" return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2# L2 范数惩罚def l2_penalty(w): return (w**2).sum() / 2def sgd(params, lr, batch_size): for param in params: param[:] = param - lr * param.grad / batch_sizedef fit_and_plot(lambd): w, b = init_params() train_ls, test_ls = [], [] for _ in range(num_epochs): for X, y in train_iter: with autograd.record(): # 添加了 L2 范数惩罚项。 l = squared_loss(linreg(X, w, b), y) + lambd * l2_penalty(w) l.backward() sgd([w, b], lr, batch_size) train_ls.append(squared_loss(linreg(train_feature, w, b), train_labels).mean().asscalar()) test_ls.append(squared_loss(linreg(test_feature, w, b), test_labels).mean().asscalar()) gb.semilogy(range(1, num_epochs + 1), train_ls, 'epochs', 'loss', range(1, num_epochs + 1), test_ls, ['train', 'test']) print('L2 norm of w:', w.norm().asscalar())
fit_and_plot(0) fit_and_plot(3)
训练集太少,容易出现过拟合,即训练集loss远小于测试集loss,解决方案,权重衰减——(L2范数正则化)
例如线性回归:
loss(w1,w2,b) = 1/n * sum(x1w1 + x2w2 + b - y)^2 /2 ,平方损失函数。
权重参数 w = [w1,w2],
新损失函数 loss(w1,w2,b) += lambd / 2n *||w||^2
迭代方程: